Copied to
clipboard

G = C24.283C23order 128 = 27

123rd non-split extension by C24 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.283C23, C23.363C24, C22.1252- 1+4, C22.1692+ 1+4, C2.24D42, C4⋊C442D4, C23⋊Q812C2, C232D4.7C2, C2.28(Q85D4), C23.32(C4○D4), (C23×C4).88C22, C23.8Q850C2, C23.10D430C2, C23.23D445C2, (C2×C42).506C22, (C22×C4).816C23, C22.243(C22×D4), C24.C2247C2, (C22×D4).519C22, (C22×Q8).110C22, C23.63C2343C2, C2.35(C22.19C24), C2.18(C22.45C24), C2.C42.120C22, C2.16(C22.33C24), (C2×C4×D4)⋊38C2, (C2×C4).339(C2×D4), (C2×C22⋊Q8)⋊15C2, (C2×C4⋊C4).244C22, C22.240(C2×C4○D4), (C2×C22⋊C4).138C22, SmallGroup(128,1195)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C24.283C23
C1C2C22C23C22×C4C23×C4C2×C4×D4 — C24.283C23
C1C23 — C24.283C23
C1C23 — C24.283C23
C1C23 — C24.283C23

Generators and relations for C24.283C23
 G = < a,b,c,d,e,f,g | a2=b2=c2=e2=f2=1, d2=a, g2=ba=ab, ac=ca, ede=gdg-1=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >

Subgroups: 660 in 334 conjugacy classes, 108 normal (22 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×Q8, C24, C24, C2.C42, C2.C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C4×D4, C22⋊Q8, C23×C4, C23×C4, C22×D4, C22×D4, C22×Q8, C23.8Q8, C23.23D4, C23.63C23, C24.C22, C232D4, C23⋊Q8, C23.10D4, C2×C4×D4, C2×C22⋊Q8, C24.283C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, 2+ 1+4, 2- 1+4, C22.19C24, C22.33C24, D42, Q85D4, C22.45C24, C24.283C23

Smallest permutation representation of C24.283C23
On 64 points
Generators in S64
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 41)(2 42)(3 43)(4 44)(5 20)(6 17)(7 18)(8 19)(9 57)(10 58)(11 59)(12 60)(13 25)(14 26)(15 27)(16 28)(21 34)(22 35)(23 36)(24 33)(29 45)(30 46)(31 47)(32 48)(37 56)(38 53)(39 54)(40 55)(49 61)(50 62)(51 63)(52 64)
(1 11)(2 12)(3 9)(4 10)(5 50)(6 51)(7 52)(8 49)(13 31)(14 32)(15 29)(16 30)(17 63)(18 64)(19 61)(20 62)(21 40)(22 37)(23 38)(24 39)(25 47)(26 48)(27 45)(28 46)(33 54)(34 55)(35 56)(36 53)(41 59)(42 60)(43 57)(44 58)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 61)(2 64)(3 63)(4 62)(5 58)(6 57)(7 60)(8 59)(9 17)(10 20)(11 19)(12 18)(13 21)(14 24)(15 23)(16 22)(25 34)(26 33)(27 36)(28 35)(29 38)(30 37)(31 40)(32 39)(41 49)(42 52)(43 51)(44 50)(45 53)(46 56)(47 55)(48 54)
(2 42)(4 44)(5 62)(6 51)(7 64)(8 49)(10 58)(12 60)(14 26)(16 28)(17 63)(18 52)(19 61)(20 50)(21 40)(22 56)(23 38)(24 54)(30 46)(32 48)(33 39)(34 55)(35 37)(36 53)
(1 15 43 25)(2 14 44 28)(3 13 41 27)(4 16 42 26)(5 56 18 39)(6 55 19 38)(7 54 20 37)(8 53 17 40)(9 31 59 45)(10 30 60 48)(11 29 57 47)(12 32 58 46)(21 49 36 63)(22 52 33 62)(23 51 34 61)(24 50 35 64)

G:=sub<Sym(64)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,41)(2,42)(3,43)(4,44)(5,20)(6,17)(7,18)(8,19)(9,57)(10,58)(11,59)(12,60)(13,25)(14,26)(15,27)(16,28)(21,34)(22,35)(23,36)(24,33)(29,45)(30,46)(31,47)(32,48)(37,56)(38,53)(39,54)(40,55)(49,61)(50,62)(51,63)(52,64), (1,11)(2,12)(3,9)(4,10)(5,50)(6,51)(7,52)(8,49)(13,31)(14,32)(15,29)(16,30)(17,63)(18,64)(19,61)(20,62)(21,40)(22,37)(23,38)(24,39)(25,47)(26,48)(27,45)(28,46)(33,54)(34,55)(35,56)(36,53)(41,59)(42,60)(43,57)(44,58), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,61)(2,64)(3,63)(4,62)(5,58)(6,57)(7,60)(8,59)(9,17)(10,20)(11,19)(12,18)(13,21)(14,24)(15,23)(16,22)(25,34)(26,33)(27,36)(28,35)(29,38)(30,37)(31,40)(32,39)(41,49)(42,52)(43,51)(44,50)(45,53)(46,56)(47,55)(48,54), (2,42)(4,44)(5,62)(6,51)(7,64)(8,49)(10,58)(12,60)(14,26)(16,28)(17,63)(18,52)(19,61)(20,50)(21,40)(22,56)(23,38)(24,54)(30,46)(32,48)(33,39)(34,55)(35,37)(36,53), (1,15,43,25)(2,14,44,28)(3,13,41,27)(4,16,42,26)(5,56,18,39)(6,55,19,38)(7,54,20,37)(8,53,17,40)(9,31,59,45)(10,30,60,48)(11,29,57,47)(12,32,58,46)(21,49,36,63)(22,52,33,62)(23,51,34,61)(24,50,35,64)>;

G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,41)(2,42)(3,43)(4,44)(5,20)(6,17)(7,18)(8,19)(9,57)(10,58)(11,59)(12,60)(13,25)(14,26)(15,27)(16,28)(21,34)(22,35)(23,36)(24,33)(29,45)(30,46)(31,47)(32,48)(37,56)(38,53)(39,54)(40,55)(49,61)(50,62)(51,63)(52,64), (1,11)(2,12)(3,9)(4,10)(5,50)(6,51)(7,52)(8,49)(13,31)(14,32)(15,29)(16,30)(17,63)(18,64)(19,61)(20,62)(21,40)(22,37)(23,38)(24,39)(25,47)(26,48)(27,45)(28,46)(33,54)(34,55)(35,56)(36,53)(41,59)(42,60)(43,57)(44,58), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,61)(2,64)(3,63)(4,62)(5,58)(6,57)(7,60)(8,59)(9,17)(10,20)(11,19)(12,18)(13,21)(14,24)(15,23)(16,22)(25,34)(26,33)(27,36)(28,35)(29,38)(30,37)(31,40)(32,39)(41,49)(42,52)(43,51)(44,50)(45,53)(46,56)(47,55)(48,54), (2,42)(4,44)(5,62)(6,51)(7,64)(8,49)(10,58)(12,60)(14,26)(16,28)(17,63)(18,52)(19,61)(20,50)(21,40)(22,56)(23,38)(24,54)(30,46)(32,48)(33,39)(34,55)(35,37)(36,53), (1,15,43,25)(2,14,44,28)(3,13,41,27)(4,16,42,26)(5,56,18,39)(6,55,19,38)(7,54,20,37)(8,53,17,40)(9,31,59,45)(10,30,60,48)(11,29,57,47)(12,32,58,46)(21,49,36,63)(22,52,33,62)(23,51,34,61)(24,50,35,64) );

G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,41),(2,42),(3,43),(4,44),(5,20),(6,17),(7,18),(8,19),(9,57),(10,58),(11,59),(12,60),(13,25),(14,26),(15,27),(16,28),(21,34),(22,35),(23,36),(24,33),(29,45),(30,46),(31,47),(32,48),(37,56),(38,53),(39,54),(40,55),(49,61),(50,62),(51,63),(52,64)], [(1,11),(2,12),(3,9),(4,10),(5,50),(6,51),(7,52),(8,49),(13,31),(14,32),(15,29),(16,30),(17,63),(18,64),(19,61),(20,62),(21,40),(22,37),(23,38),(24,39),(25,47),(26,48),(27,45),(28,46),(33,54),(34,55),(35,56),(36,53),(41,59),(42,60),(43,57),(44,58)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,61),(2,64),(3,63),(4,62),(5,58),(6,57),(7,60),(8,59),(9,17),(10,20),(11,19),(12,18),(13,21),(14,24),(15,23),(16,22),(25,34),(26,33),(27,36),(28,35),(29,38),(30,37),(31,40),(32,39),(41,49),(42,52),(43,51),(44,50),(45,53),(46,56),(47,55),(48,54)], [(2,42),(4,44),(5,62),(6,51),(7,64),(8,49),(10,58),(12,60),(14,26),(16,28),(17,63),(18,52),(19,61),(20,50),(21,40),(22,56),(23,38),(24,54),(30,46),(32,48),(33,39),(34,55),(35,37),(36,53)], [(1,15,43,25),(2,14,44,28),(3,13,41,27),(4,16,42,26),(5,56,18,39),(6,55,19,38),(7,54,20,37),(8,53,17,40),(9,31,59,45),(10,30,60,48),(11,29,57,47),(12,32,58,46),(21,49,36,63),(22,52,33,62),(23,51,34,61),(24,50,35,64)]])

38 conjugacy classes

class 1 2A···2G2H···2M4A···4H4I···4T4U4V4W4X
order12···22···24···44···44444
size11···14···42···24···48888

38 irreducible representations

dim11111111112244
type++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2D4C4○D42+ 1+42- 1+4
kernelC24.283C23C23.8Q8C23.23D4C23.63C23C24.C22C232D4C23⋊Q8C23.10D4C2×C4×D4C2×C22⋊Q8C4⋊C4C23C22C22
# reps112221122281211

Matrix representation of C24.283C23 in GL6(𝔽5)

400000
040000
001000
000100
000040
000004
,
100000
010000
001000
000100
000040
000004
,
100000
010000
004000
000400
000010
000001
,
010000
400000
001000
000100
000001
000040
,
100000
040000
001300
000400
000040
000001
,
100000
010000
001000
001400
000010
000004
,
300000
020000
004000
000400
000010
000004

G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,1,0],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,3,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[3,0,0,0,0,0,0,2,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4] >;

C24.283C23 in GAP, Magma, Sage, TeX

C_2^4._{283}C_2^3
% in TeX

G:=Group("C2^4.283C2^3");
// GroupNames label

G:=SmallGroup(128,1195);
// by ID

G=gap.SmallGroup(128,1195);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,112,253,758,723,675,192]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=e^2=f^2=1,d^2=a,g^2=b*a=a*b,a*c=c*a,e*d*e=g*d*g^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽